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BACKGROUND Continuous monitoring for atrial fibrillation (AF) using photoplethysmography (PPG) from smart-

watches or other wearables is challenging due to periods of poor signal quality during motion or suboptimal wearing. As a

result, many consumer wearables sample infrequently and only analyze when the user is at rest, which limits the ability to

perform continuous monitoring or to quantify AF.

OBJECTIVES This study aimed to compare 2 methods of continuous monitoring for AF in free-living patients: a

well-validated signal processing (SP) heuristic and a convolutional deep neural network (DNN) trained on raw signal.

METHODS We collected 4 weeks of continuous PPG and electrocardiography signals in 204 free-living patients. Both SP

and DNN models were developed and validated both on holdout patients and an external validation set.

RESULTS The results show that the SP model demonstrated receiver-operating characteristic area under the curve

(AUC) of 0.972 (sensitivity 99.6%, specificity: 94.4%), which was similar to the DNN receiver-operating characteristic

AUC of 0.973 (sensitivity 92.2, specificity: 95.5%); however, the DNN classified significantly more data (95% vs 62%),

revealing its superior tolerance of tracings prone to motion artifact. Explainability analysis revealed that the DNN

automatically suppresses motion artifacts, evaluates irregularity, and learns natural AF interbeat variability. The DNN

performed better and analyzed more signal in the external validation cohort using a different population and PPG sensor

(AUC, 0.994; 97% analyzed vs AUC, 0.989; 88% analyzed).

CONCLUSIONS DNNs perform at least as well as SP models, classify more data, and thus may be better for continuous

PPG monitoring. (J Am Coll Cardiol EP 2024;10:334–345) © 2024 The Authors. Published by Elsevier on behalf of

the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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AB BR E V I A T I O N S

AND ACRONYM S

AF = atrial fibrillation

DNN = deep neural network

IBI = interbeat interval

ECG = electrocardiography

IRN = irregular rhythm

notification

NPV = negative predictive

value

PPG = photoplethysmography

PPV = positive predictive value

ROC-AUC = receiver-

operating characteristic-area

under the curve

SP = signal processing
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A trial fibrillation (AF) is the most common sus-
tained cardiac arrhythmia, which can impair
patients’ quality of life, and is a major cause

of hospital admissions, stroke, and mortality.1,2

Even after initiation of treatment, ongoing objective
monitoring for recurrence of AF is important for pa-
tient management, keeping in mind that one-third
of individuals with AF are asymptomatic and in gen-
eral there is poor correlation between symptoms
and onset/duration of AF episodes.3,4

Smartwatches have emerged as a potential tool for
continuous AF monitoring and detection. These
wearable devices are able to evaluate pulse wave
and rate data using photoplethysmography (PPG)—a
noninvasive sensor that measures reflected light
from the surface of the skin that captures volumetric
variations in capillary blood flow.5 PPG-based AF
detection technology utilizing PPG signal and other
onboard sensors for opportunistic sampling or noise
rejection was developed by several smartwatch
manufacturers including Samsung,6 Apple,7 and
Fitbit8 and validated with various degrees of rigor.
However, the reported performance characteristics
are affected by selection bias: studies use highly
selected patients for validation and discard a large
proportion of signals or sampling time due to noise.
For example, the Apple Heart Study evaluated heart
rhythm using a noncontinuous tachogram measure,
which performs 1-minute recordings every 2 hours,
and only when the user is still—this equates to about
12 min/d of AF monitoring (<1% of the day).8 The
Fitbit (Google) algorithm only sampled when the
user was still, which was an average of w8 hours
each day.8 Our previous report using Samsung watch
data excluded 32% of data due to poor signal quality,
which is lower than for any previously published
smartwatch.6,9 Other published signal processing
(SP) heuristics and deep learning models were also
challenged by limited sampling,6-8,10-13 low speci-
ficity,14-16 and the high percent of signals rejected
due to noise.6,8,17-19 Many of these studies were
limited by selection bias: the Apple and Fitbit
studies only evaluated patients already flagged
positive by their AF algorithm, leading to an un-
known amount of missed patients with AF, and
many other published studies only evaluated pa-
tients asleep or at rest undergoing cardiover-
sion.13,14,20-22 Overall, none of the previously
published models evaluated enough user-level signal
to be considered “near continuous,” nor did they
include free-living patients for an unbiased valida-
tion, both of which are required for highly accurate
continuous around-the-clock outpatient monitoring
for AF using a smartwatch.
Here, we report the largest known dataset
of simultaneous continuous ECG and PPG
recordings from ambulatory free-living pa-
tients that are annotated by cardiologists.
From this, we developed a SP algorithm
based on a well-validated best-performing
heuristic that measures irregularity (en-
tropy).12 We compared the SP model with a
convolutional deep neural network (DNN)
that is trained on raw PPG signal and exter-
nally validated these models against a sample
of ambulatory PPG data simultaneously
obtained with ECG telemetry. We report the
performance of each model as well as the
amount of signal data analyzed with the goal
of near-continuous monitoring of AF (see
Central Illustration).
METHODS

STUDY SAMPLE. The protocol for patient recruitment
and data collection was reported previously.6 The
study was approved by the University of California-
San Francisco Institutional Review Board, and con-
sent was obtained from all participants. Participants
with a self-reported history of AF or at least 1 risk
factor for AF were invited electronically using
the Eureka Research Platform,23 from the Health
eHeart Study, which is a large observational cohort
of >300,000 participants (see the Supplemental
Methods for details). Upon enrollment, participants
were shipped a study kit containing two 14-day Bio-
Tel ePatches and a Samsung Galaxy Active 2 smart-
watch along with instructions. Instructions were also
provided using the Eureka Research app, along with
push notifications and SMS messages reminding them
to wear the watch and ECG patch during the entire
4-week period. The total monitoring time was up to
28 days (2� 14-day patches), after which the ePatches
were returned by mail. Upon return of the ePatches,
the ECG data were converted to ISHNE format for
input into the University of California-San Francisco’s
Signal Processing Core using CER-S (Continuous
ECG Recording Suite) (AMPS-LLC). AF episodes were
identified by a technician and overread by a board-
certified cardiologist. Atrial flutter episodes were
considered non-AF.

TRAINING DATASET GENERATION. ECG and PPG
signals were time aligned and each 5-minute segment
labeled as AF, normal rhythm, or other based on the
ECG reading. ECG labels with no available time-
aligned PPG recording within a 3-minute search
window or those with >80% of missing signal were
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CENTRAL ILLUSTRATION Comparison of Performance of a Robust Signal Processing Algorithm
to a DNN Machine Learning Algorithm for Detection of AF From PPG
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Antiperovitch P, et al. J Am Coll Cardiol EP. 2024;10(2):334–345.

A robust signal processing heuristic and convolutional deep neural network were compared in classification of atrial fibrillation on

photoplethysmography smartwatch tracings. Overall performance was similar between the 2 approaches; however, the deep neural network

was able to classify substantially more signals, demonstrating its superior tolerance of motion artifact. AF ¼ atrial fibrillation; DNN ¼ deep

neural network; PPG ¼ photoplethylsmography; ROC-AUC ¼ receiver-operating characteristic area under the curve.
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discarded (w15% of data). This yielded a total of
847,033 5-minute ECG-labeled PPG samples that were
used for training/validation on 204 participants. The
data were then split by participants into training,
validation, and holdout groups in a 70:15:15 split. All
data analysis was performed on participants assigned
to the holdout group.

EXTERNAL DATASET GENERATION. We randomly
selected 50 ambulatory inpatients who had telemetry
recordings containing simultaneous ECG and PPG
telemetry data between July 1, 2022, and July 15,
2022, at the University of California, San Francisco
Medical Center (Philips IntelliVue MX40 device). Up
to 5 days of telemetry data were selected per patient
depending on availability. Telemetry data were pro-
cessed using CER-S and manually annotated by a
cardiac electrophysiologist. The opinion of a second
cardiac electrophysiologist was obtained if the car-
diac rhythm was not clear at initial review. Tracings
were partitioned into 5-minute PPG segments,
resampled to 25 Hz, scaled, and paired with ECG-
adjudicated labels. Segments with >80% of missing
signal were discarded (ie, PPG sensor was off).

DNN DEVELOPMENT AND VALIDATION. The DNNs
were developed using a Python 3.9 development
environment (Python Software Foundation) using
PyTorch library suite (Meta AI). A large number
of DNN architectures were tested; however,
convolutional neural networks provided superior
performance, similar to prior findings.13 A series of
high-density architectural and hyperparameter
sweeps were conducted using Weights & Biases soft-
ware.14 The best architecture for AF detection with
minimal memory footprint involved 15 blocks of
convolutional layers, batch normalization, and
dropout. The model was trained as a binary classifier
using Binary Cross Entropy Loss and Adam optimizer,
with sigmoid output (0 ¼ “no AF” and 1 ¼ “AF”). For
the purposes of comparison, the DNN cutoffs were
selected in order to maximize the amount of data



TABLE 1 Baseline Characteristics of Patients (N ¼ 202)

Age

<65 y 104 (51.5)

65-75 y 67 (33.2)

>75 y 31 (15.3)

Sex

Male 108 (53.5)

Female 94 (46.5)

Race

Caucasian 181 (89.6)

Hispanic 8 (4.0)

Black or African American 8 (4.0)

Asian 8 (4.0)

American Indian or Alaska Native 3 (1.5)

Other 4 (2.0)

History of AF

No history 9 (4.4)

Paroxysmal 175 (86.6)

Persistent 16 (7.9)

Symptoms of AF

Symptoms of AF at time of study 27 (13.4)

Daily 9 (4.5)

Weekly 50 (24.8)

Monthly 40 (19.8)

Within 1 y 39 (19.3)

More than a year 15 (7.4)

Never aware 13 (6.4)

Comorbidities

History of HTN 105 (52.0)

History of CHF 31 (15.3)

Previous MI 19 (9.4)

History of coronary artery disease 40 (19.8)

History of TIA or stroke 20 (9.9)

Diabetes 28 (13.9)

Obstructive sleep apnea 82 (40.6)

CHA2DS2-VASc score

0-1 69 (34.2)

2-4 110 (54.5)

5-7 16 (7.9)

Values are n (%).

AF ¼ atrial fibrillation; CHF ¼ congestive heart failure; HTN ¼ hypertension;
MI ¼ myocardial infarction; TIA ¼ transient ischemic attack.
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classified while achieving ideal sensitivity/specificity.
The DNN–standard model classified AF if sigmoid
output was >0.9, no-AF if sigmoid output was <0.1,
and the rest uncertain. The DNN–lower uncertainty
threshold had cutpoints of 0.99 and 0.01.

SP ALGORITHM DEVELOPMENT. The SP algorithm
was created based on Zhao at al.24 The signal was
processed using a bandpass filter to reduce the impact
of low- and high-frequency artifact. Pulse detection
was accomplished by locating peaks in filtered PPG
signal. Timing of pulses was refined fitting a
quadratic to 3 samples surrounding the peak and
noting the peak time of the quadratic curve to an
accuracy of 1 millisecond. Peaks with amplitudes
more than twice the running average and interbeat
interval (IBI) less than the average IBI by more than
160 milliseconds or with a baseline shift larger than
twice the running average pulse amplitude were dis-
carded as being artifact. Segments were classified as
artifact if they contained fewer than 100 IBIs or if the
sum of valid IBIs was <150 seconds. Entropy of IBIs
over a 5-minute sliding window was calculated using
the Shannon technique that was previously re-
ported24; Shannon entropy values >100 (S¼100) or
>80 (S¼80) were used as thresholds for AF. Because
atrial/ventricular ectopy is a common cause for false
positives, a specific ectopy detection function was
implemented to reject these signals as non-AF
(Supplemental Methods, SP Ectopy Detection).

DNN EXPLAINABILITY. Model explainability analysis
for the DNN was performed using 3 methods: input
augmentation, input generation, and LIME (Local
Interpretable Model-Agnostic Explanations).25 For
input augmentation, the model was trained using IBIs
obtained from identified peaks while excluding
waveform information (SciPy.signal module). For
input generation, we generated synthetic signal seg-
ments with engineered features and performed
inference using a pretrained DNN to understand the
relative importance of each feature. Features tested
include random vs nonrandom IBIs, random IBIs
drawn from a normal probability distribution of
varying mean and standard deviation, and PPG seg-
ments containing various proportions/order of both
sinus rhythm and AF.

RESULTS

A total of 847,033 labels and corresponding PPG
tracings were used for testing and training; a separate
120,900 samples from 31 (w15%) participants were
withheld for final validation and were not used in the
design, optimization, or training of models. The
holdout samples had 18% AF; baseline characteristics
are outlined in Table 1.

INTERNAL VALIDATION. The SPmodel demonstrated
an entropy receiver-operating characteristic-area un-
der the curve (ROC-AUC) of 0.972 (sensitivity of 99.6%,
specificity of 94.4%, positive predictive value [PPV]
76.2% and negative predictive value [NPV] 99.9%) for
AF detection, and it classified 62% of the signal; the
remaining signal was labeled as uncertain (Figure 1,
Table 2). The DNN model trained on raw PPG signal
revealed a similar ROC-AUC of 0.973 (sensitivity
92.2%, specificity 95.5%, PPV 76.0%, NPV 98.7%)
but classified a larger portion of data (95%).

https://doi.org/10.1016/j.jacep.2024.01.008
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FIGURE 1 Receiver-Operating Characteristic Curves

Performance of 2 deep neural network (DNN) models on internal validation (Int. Val.) and

external validation (Ext. Val.). The DNN–raw signal model was trained on the raw signal,

whereas the DNN–interbeat interval (IBI) model was trained on IBIs only. SP ¼ signal

processing.
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The DNN cutpoints were then adjusted to increase
performance at the expense of amount of data
classified (DNN–lower uncertainty threshold) and
revealed a sensitivity of 98.0% and specificity of
99.9% (PPV 87.0%, NPV 99.9%) (Table 2) but
reduced the amount of data classified to 79%;
notably, even with this stricter cutpoint, the DNN
still classified considerably more data than the SP
model (Table 2).

EXTERNAL VALIDATION. A total of 29,878 segments
were generated from 50 ambulatory inpatients on
telemetry with simultaneous PPG and ECG signals, of
which 5,843 (19.0%) demonstrated AF in 21 patients
Characteristics of Models on Holdout Data (Internal Validation)

% of Data
Classified

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%) ROC-AUC

100) 62 94.2 94.9 77.1 99.9 0.972

80)a 62 99.6 94.4 76.2 99.9

95 92.2 95.5 76.0 98.7 0.973

thresholdc 79 98.0 99.9 87.0 99.9

88 82.6 97.4 79.2 97.9 0.961

, and with a lower entropy cutpoint there is increased sensitivity of AF detection.
g cutoffs >0.9 for AF, <0.1 for non-AF, and outputs 0.1 to 0.9 as uncertain. cSame as
xcept that outputs were adjusted to maximize classification accuracy in preference to
id output of >0.99 for AF and <0.01 for non-AF, and outputs between these values

NN ¼ deep neural network; IBI ¼ interbeat interval; NPV ¼ negative predictive value;
alue; ROC-AUC ¼ receiver-operating characteristic area under the curve.
(7 paroxysmal AF, 14 permanent AF). The SP model
classified AF with a ROC-AUC of 0.989 (sensitivity
96.9%, specificity 96.3%, PPV 97.0%, NPV 99.2%), and
88% of samples were analyzed (Table 3). Evaluating
the performance of the DNN on this external dataset
revealed a ROC-AUC of 0.994 (sensitivity 90.1%,
specificity 99.7%, PPV 98.6%, NPV 97.9%), and 97% of
data were classified. Lowering the threshold for un-
certainty (DNN–lower uncertainty threshold) raised
the sensitivity to 94.0% and the specificity to 99.9%
(PPV 99.2%, NPV 99.3%), at the expense of a lower
amount of data classified (86%). Analyzing the results
grouped by patient, both the DNN-raw and SP models
identified AF in every patient who had experienced
AF. However, the DNN-raw falsely detected AF in 1 of
29 participants who did not have AF, whereas SP
falsely detected AF in 16 of 29. The only false positive
classified by the DNN was a patient with periods of
sinus arrhythmia and frequent premature atrial con-
tractions. False positives from the SP method
included tracings with poor signal quality (11 users),
frequent premature atrial contractions/premature
ventricular contractions (4 users), and sinus
arrhythmia (2 users).

DNN EXPLAINABILITY ANALYSIS. Several ap-
proaches were used to understand how the DNN
functions. First, we trained the same DNN with just
IBI input, which was derived by preprocessing the
signal with a peak detection algorithm. This DNN-IBI
revealed a ROC-AUC of 0.961 on internal validation
and 0.988 on external validation, which was less
performant than the DNN trained on raw signal (0.973
and 0.994, respectively), and created more uncertain
classifications (12% vs 5%). This suggests that the
DNN trained on raw signal is better at rejecting noise
and/or identifying relevant parts of the signal.
Implementing other heuristics such as second-order
derivatives and filtering of the signal did not
improve DNN performance.

Second, LIME explanation analysis was used to
identify regions of the DNN that were important for
prediction. We found that the model learned to
distinguish noise from biological signal and focused
on noise-free areas of the tracing while suppressing
areas of high-frequency motion artifact (Figure 2A).
When performing LIME evaluation on tracings that
were noise-free, the model used the majority of the
tracing to generate a prediction (Figure 2B).

Third, we investigated model performance on
tracings that contain both AF and sinus rhythm by
splicing the PPG signal containing AF and sinus
rhythm in different ratios. The model needed at
least 20% of a 5-minute tracing to be AF to pass the



TABLE 3 Operating Characteristics of Models on External Validation

% of Data
Classified

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%) ROC-AUC

Signal processing (S ¼ 100) 88 91.2 98.0 92.3 97.8 0.989

Signal processing (S ¼ 80)a 88 96.9 96.3 97.0 99.2

DNN–standardb 97 90.1 99.7 98.6 97.9 0.994

DNN–lower uncertainty thresholdc 86 94.0 99.9 99.2 99.3

DNN–IBI 91 86.6 99.8 98.4 97.7 0.988

aS is the entropy cutpoint, and with lower entropy cutpoint there is increased sensitivity of AF detection and a
better balance between sensitivity and specificity. bModel was evaluated using cutoffs>0.9 for AF,<0.1 for non-
AF, and outputs 0.1 to 0.9 as uncertain. cSame as the DNN–standard model, except that outputs were adjusted to
maximize classification accuracy in preference to % of data analyzed (>0.99 for AF and <0.01 for non-AF), with
everything in between as uncertain.

Abbreviations as in Table 2.
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threshold of AF detection, and whether the AF was
in the beginning, end, or middle of the tracing had
no impact (Figure 3A). When we replaced the AF
portion of the tracing with a more challenging AF
rhythm (ie, AF with noise artifact), the DNN
required longer stretches of AF (w40%) to be
convinced (Figure 3B).

To investigate the effect of IBI distribution on the
DNN model performance, we performed inference on
synthetic tracings created from randomly ordered
IBIs (simulating AF) of varying mean and standard
deviation in a normal distribution (Figure 4A). This
revealed that the model requires an IBI SD of w8 to 20
beats/min to detect AF most accurately. Below this
range generates non-AF prediction, and signals above
15 to 20 beats/min have a high rate of “uncertain”
decisions. It is clear that when plotting predictions of
DNN-raw on the internal validation set, the majority
of false negatives arose from heart rates outside of 45
to 120 beats/min (blue dots in Figure 4B); however,
the false positives did not follow a clear heart rate
pattern and seem to cluster in the 50- to 60-beats/min
band (yellow dots in Figure 4C). Of note, the DNN
model had very few training examples outside of 45
to 120 beats/min (Supplemental Figure 1). We also
explored the impact of the degree of normality; we
found no relationship between the normality of the
distribution and probability of AF decisions
(Supplemental Figure 2).

DISCUSSION

We have developed and validated 2 models for
detecting AF using PPG: a SP model based on a proven
high-performance AF detection heuristic, and a
custom convolutional DNN trained on an extensive
collection of raw PPG signals from individuals in their
natural living environments. Overall, the SP model
had similar performance with ROC-AUC of 0.972 (SP
sensitivity 99.6%, specificity 94.4%) compared with
the DNN, which demonstrated an ROC-AUC of 0.973
(DNN sensitivity 92.2%, specificity 95.5%); however,
the DNN classified significantly more samples (95% vs
62%) while maintaining accuracy. With stricter un-
certainty cutpoints, the DNN can perform even better
(sensitivity 98.0%, specificity 99.9%) but at the cost
of fewer tracings classified (79% classified). However,
the DNN still classifies more tracings than SP. The
robustness of our models was further confirmed by
testing on an external dataset in a distinct patient
group using a different PPG recording device (hospi-
talized patients by pulse oximeter vs free-living pa-
tients by smartwatch). The results demonstrated the
DNN’s exceptional performance, with an ROC-AUC of
0.994, compared with 0.989 for the SP model,
underscoring its potential to generalize to various
devices and populations, possibly with even higher
efficacy. Moreover, the capacity of the DNN to
analyze the most extensive duration of signal data in
real-world conditions stands as a notable strength
over pre-existing approaches to PPG analysis for
rhythm detection, enabling continuous free-living
monitoring.

Our SP model is a PPG implementation of one of
the most high performing ECG-based AF detectors,
originally developed by Zhou et al.24 Like most AF
detection heuristics, this algorithm was originally
developed for ECGs and adapted for PPG input.26 It
was previously well validated on ECG datasets, and
found to be highly tolerant of noise, making it ideal
for PPG use. The PPG signal differs in that it does not
contain P waves, is gathered by smartwatches in free-
living ambulating patients, and is more prone to
amplitude changes, noise, and artifact. We previously
reported a robust SP detector that utilized a multi-
sensor noise detection algorithm (PPG signal þ
accelerometer) to automatically reject an entire
5-minute segment and a hierarchical decision model
based on IBI variability and entropy.6 We were able to
demonstrate a sensitivity of 89.7% and specificity of
97.0% with an AUC of 0.933 while classifying 32% of
PPGs as indeterminate. Our SP model demonstrated
significantly improved performance on the same
dataset (AUC: 0.972) without the need for additional
sensor input (accelerometer). This is the only other
study that validated a SP algorithm on continuous
signal from free-living patients. In comparison, other
models include McManus et al,22 who combined 3
independently validated techniques that included
root mean square of successive RR differences,
Shannon entropy and Poincaré plots, and was able to
achieve a sensitivity of 97.0% and a specificity of
93.5% but discarded an unreported amount of poor-
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FIGURE 2 DNN Interpretation Using LIME

Area at the top demonstrates deep neural network (DNN)–determined relative importance of the respective part of the tracing to model

prediction (yellow ¼ high importance, blue ¼ low importance). (A) Tracing with substantial motion artifact showing the DNN suppressed areas

of high-frequency noise, and focused on areas of clean biological signal. (B) A tracing with minimal motion artifact—the DNN weighed the entire

signal relatively equally. PPG ¼ photoplethysmography. LIME ¼ Local Interpretable Model-Agnostic Explanations.
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quality recordings and asked the user to reacquire
until a high-quality recording was gathered. Conroy
et al21 also developed a model based on heart rate
variability measures, resulting in a sensitivity and
specificity of 90.9%, but did not mention noise
rejection rate. Zaman et al20 also reported one of the
most accurate AF detection heuristics to date (sensi-
tivity 97%, specificity 98%), but w59% of data were
discarded as corrupted. Most of these previously re-
ported SP models (except Avram et al)6 are limited by



FIGURE 3 Probability of AF Class Plotted Against Percent of AF on a 5-Minute Segment

The model was evaluated by performing inference on spliced atrial fibrillation (AF)/sinus photoplethysmography tracings at various ratios. (A)

Probability of AF label plotted against the % of tracing that is AF. (B) Same as panel A, except a more challenging AF tracing was used (ie, AF

with noise).
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selection bias: they were validated in highly selected
patients—those undergoing a cardioversion, during
which the patient is still and the device has optimal
skin contact to minimize noise. These are not typical
PPG tracings found on consumer wearable devices
(Figure 2A) in a free-living environment, and as
such, these models cannot be used for continuous
outpatient monitoring of AF without more robust
validation.

The commercial models, developed by Fitbit/Goo-
gle and Apple, used data from free-living patients but
only interpreted tracings at certain times of day and
when the accelerometer revealed no motion.6-8 For
example, the Apple Heart Study evaluated the Apple
irregular rhythm notification (IRN) algorithm by
screening 419,297 participants and enrolling 450
(0.5%) with a positive IRN. Subsequent IRNs were
compared against a gold standard of ECG patch re-
cordings, resulting in a PPV of 71% for an individual
tachogram, compared with 76% to 99% in our study.
The IRN algorithm sampled 1-minute tachograms
every 2 hours, equaling at most 12 minutes of AF
monitoring per day, of which an unknown proportion
is further discarded if the accelerometer detects mo-
tion. The study was also limited in assessing the true
performance of the algorithm because the gold-
standard assessment of AF using ECG monitoring
was done only in a small convenience sample of those



FIGURE 4 Probability of AF Class Plotted Against Mean Heart Rate and Heart Rate Standard Deviation (“Range”)

(A) Predictions of the DNN-IBI model on randomly ordered IBI sets of various means and standard deviations. (B) The heart rate distributions of

the validation dataset that had true AF—blue dots on this graph indicate false negatives. (C) Heart rate distributions of the validation dataset

that did not have AF—yellow dots represent false positives. The dot color represents model prediction (yellow ¼ AF, blue ¼ non-AF, shades of

orange ¼ uncertain). Abbreviations as in Figures 2 and 3.
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TABLE 4 False Positive Results Based on User-Level Tracings

SP False Positives DNN False Positives

ECG/PPG tracing review N users
N total ¼ 16 (segments)a

N users
N total ¼ 1 (segments)

Noise/artifactb 11 (63) 0

Frequent PACs/PVCs 4 (126) 0

Sinus arrhythmia 2 (184) 1 (25)

Values are n (%). aNumbers do not add to 16 because 1 user had PPG tracing with both poor
quality and frequent PACs. bBased on visual assessment of PPG waveform.

DNN ¼ deep neural network; ECG ¼ electrocardiography; PAC ¼ premature atrial contraction;
PPG ¼ photoplethysmography; PVC ¼ premature ventricular contraction; SP ¼ signal processing.
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with an IRN alert who chose to wear and return the
patch ECG monitor, rather than in the entire popula-
tion or a random sample; as a result, the false nega-
tive rate could not be assessed and the true positive
rate was in a potentially biased sample. The newer
algorithm from the Apple Watch, AF History, at-
tempts to detect AF as frequently as every 15 minutes
but still only analyzes when the user is completely at
rest; no validation studies are published on this
newer algorithm. The Fitbit study attempted to
improve sampling time by analyzing every 5 minutes
with 50% overlap between segments. However, they
also only collected data when users were stationary
for the entire collection period, which resulted in
monitoring for an average 8 hours/day, 76% of which
was during sleep. They screened 455,699 participants
and only enrolled participants flagged positive by
their algorithm (w1%) into simultaneous validation
with ECG, reporting a PPV of 97.0%. However, much
like the Apple Heart Study, they enrolled highly
selected patients—those already flagged positive by
their strict algorithm, which was 11 consecutive PPG
segments positive for AF (30 minutes), rendering an
assessment of false negatives impossible. Even in this
selected sample, they report a sensitivity of 68.0%,
compared to a sensitivities of 91.2% to 99.6% for the
signal processing heuristic and 90.1% to 98.0% for the
DNN in our study reported herein.8 Of note, the noise
rejection technique, the proportion rejected due to
signal quality, or those with indeterminate classifi-
cations were not reported in either Apple or Fitbit
studies.

Many other DNNs were developed for AF detection
on PPG signal, but were all limited by selection bias
because they were validated in an artificial environ-
ment on patients who were asleep or supine and still,
minimizing or eliminating noisy signals. For example,
Gotlibovych et al,27 Kwon et al,13 and Tison et al14

reported DNNs with exceptional performance in
identifying AF with an AUC of 0.999, an AUC of 0.996,
and a C-statistic of 0.97, respectively. However, the
validation and training sample includes patients
around the time of sedation/cardioversion under su-
pervision or healthy volunteers during sleep, limiting
the generalizability to ambulatory patients.

Another finding of this study is the exceptional
performance of DNNs when trained on raw PPG
signal. Many previously published DNNs were paired
with various noise-filtering algorithms,17,19 or used
IBIs as an input instead of raw signal.6-8,14,18 In our
study, we found that a DNN trained on raw signal
outperformed the DNN trained on IBIs, allowing the
DNN to develop its own noise rejection and interval/
rhythm detection, which led to classification of more
signals (95%) than our SP model (62%) and other
published DNNs trained on IBIs. The LIME explain-
ability analysis indicated automatic suppression
of nonbiologic signal with impressive accuracy
(Figure 2A). As a result, the DNN seems to use as much
of the signal as it can extract to make its prediction
(Figure 2B). In fact, user-level data indicated that only
1 patient of 29 who did not have AF received a false
positive using our DNN classifier, compared with 16
patients with the SP model. The false positives in the
SP model were mostly on segments containing sig-
nificant noise, which highlights DNN’s superior per-
formance in noisy signal (Table 4).

It is worth emphasizing that the DNN outlined in
this study has a small memory footprint (w725 kb),
and thus can be deployed on wearable devices to
continuously monitor for AF. The thresholds of the
DNN can also be adjusted to ensure higher certainty
when screening patients without a history of AF to
avoid false alarms, and modified to increase sensi-
tivity of AF detection in patients with known AF to
characterize the burden of AF (% of time spent in AF).
This fine-tuning is more difficult with SP due to a
separate noise-rejection algorithm.

STUDY LIMITATIONS. First of all, the study included
generally younger patients (52.0% <65 years of age)
with mostly Caucasian ethnicity, which may intro-
duce some bias. Of note, these patients have self-
identified AF, which represents a higher risk group.

Explainability analysis using synthetic data reveals
that the DNN most accurately identifies AF between
heart rates of 45 and 120 beats/min (Figure 4A). PPG
tracings with heart rates outside of this range result in
high false negative rates (Figures 4B and 4C), likely
due to a paucity of training data with extreme heart
rates (Supplemental Figure 2). This is similar to the
operating range of current commercial AF detection
algorithms.10-12 Performance can be improved by
enriching training with examples of AF at those heart
rates; however, PPG-based AF detection at fast heart
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PERSPECTIVES

COMPETENCY IN SYSTEMS-BASED PRACTICE:

The authors outline technology for remote minimally

invasive monitoring of AF in free-living outpatients

using wearable PPG sensors (ie, smartwatches). This is

a new paradigm for outpatient monitoring of heart

rhythm abnormalities.

TRANSLATIONAL OUTLOOK: The next steps

involve translational research to deploy the AF

detection model to wearable PPG-capable devices and

perform prospective validation.
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rates is challenging due to smaller difference in IBI,
and may not be necessary, as the smartwatch can
recommend seeking medical attention at persistently
extreme heart rates.

The model also requires at least 1 minute of AF for
detection; however, the clinical significance of very
short AF episodes is unknown especially if patients
can be continuously monitored.4 Understanding the
inner workings of the DNN is also challenging. All
explainability techniques have limitations as they can
only evaluate some features that are potentially used
by the model, and only provide limited insight into
how the DNN functions. In comparison, the SP model
was specifically engineered to use certain features on
PPG based on known characteristics of AF, and is
easier to understand/troubleshoot. DNNs are also
prone to overfitting—to overcome this, we externally
validated our DNN, which revealed an impressive
ability to generalize to other patients and PPG
recording devices (pulse oximeter vs smartwatch).

CONCLUSIONS

This report highlights the strength of DNNs in PPG-
based AF detection by demonstrating that it is able
to accurately classify almost all available PPG signal
in free-living patients, which is significantly more
than the best available SP heuristic. Automatic
feature detection of DNNs can be maximized by
training on raw signal, as performance can degrade
if trained on preprocessed signal (IBIs or filtering).
DNNs are able to suppress motion artifact/noise,
infer IBIs, evaluate their stochastic nature, and
incorporate information about the distribution of
IBIs to identify AF. Future DNN-based models
that are trained on raw signal can provide
minimally invasive continuous AF monitoring with
accuracy that approaches that of ambulatory ECG
monitoring.
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